Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103880, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454976

RESUMEN

INTRODUCTION: Niemann-Pick type C2 disease (NP-C2) is a fatal neurovisceral disorder caused by defects in the lysosomal cholesterol transporter protein NPC2. Consequently, cholesterol and other lipids accumulate within the lysosomes, causing a heterogeneous spectrum of clinical manifestations. Murine models are essential for increasing the understanding of the complex pathology of NP-C2. This study, therefore, aims to describe the neurovisceral pathology in the NPC2-deficient mouse model to evaluate its correlation to human NP-C2. METHODS: Npc2-/- mice holding the LST105 mutation were used in the present study (Npc2Gt(LST105)BygNya). Body and organ weight and histopathological evaluations were carried out in six and 12-week-old Npc2-/- mice, with a special emphasis on neuropathology. The Purkinje cell (PC) marker calbindin, the astrocytic marker GFAP, and the microglia marker IBA1 were included to assess PC degeneration and neuroinflammation, respectively. In addition, the pathology of the liver, lungs, and spleen was assessed using hematoxylin and eosin staining. RESULTS: Six weeks old pre-symptomatic Npc2-/- mice showed splenomegaly and obvious neuropathological changes, especially in the cerebellum, where initial PC loss and neuroinflammation were evident. The Npc2-/- mice developed neurological symptoms at eight weeks of age, severely progressing until the end-stage of the disease at 12 weeks. At the end-stage of the disease, Npc2-/- mice were characterized by growth retardation, tremor, cerebellar ataxia, splenomegaly, foam cell accumulation in the lungs, liver, and spleen, brain atrophy, pronounced PC degeneration, and severe neuroinflammation. CONCLUSION: The Npc2Gt(LST105)BygNya mouse model resembles the pathology seen in NP-C2 patients and denotes a valuable model for increasing the understanding of the complex disease manifestation and is relevant for testing the efficacies of new treatment strategies.


Asunto(s)
Glicoproteínas , Esplenomegalia , Humanos , Ratones , Animales , Lactante , Glicoproteínas/genética , Glicoproteínas/metabolismo , Enfermedades Neuroinflamatorias , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad
2.
J Neurochem ; 164(1): 6-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35554935

RESUMEN

Treating central nervous system (CNS) diseases is complicated by the incapability of numerous therapeutics to cross the blood-brain barrier (BBB), mainly composed of brain endothelial cells (BECs). Genetically modifying BECs into protein factories that supply the CNS with recombinant proteins is a promising approach to overcome this hindrance, especially in genetic diseases, like Niemann Pick disease type C2 (NPC2), where both CNS and peripheral cells are affected. Here, we investigated the potential of the BEC-specific adeno-associated viral vector (AAV-BR1) encoding NPC2 for expression and secretion from primary BECs cultured in an in vitro BBB model with mixed glial cells, and in healthy BALB/c mice. Transduced primary BECs had significantly increased NPC2 gene expression and secreted NPC2 after viral transduction, which significantly reversed cholesterol deposition in NPC2 deficient fibroblasts. Mice receiving an intravenous injection with AAV-BR1-NCP2-eGFP were sacrificed 8 weeks later and examined for its biodistribution and transgene expression of eGFP and NPC2. AAV-BR1-NPC2-eGFP was distributed mainly to the brain and lightly to the heart and lung, but did not label other organs including the liver. eGFP expression was primarily found in BECs throughout the brain but occasionally also in neurons suggesting transport of the vector across the BBB, a phenomenon also confirmed in vitro. NPC2 gene expression was up-regulated in the brain, and recombinant NPC2 protein expression was observed in both transduced brain capillaries and neurons. Our findings show that AAV-BR1 transduction of BECs is possible and that it may denote a promising strategy for future treatment of NPC2.


Asunto(s)
Barrera Hematoencefálica , Enfermedad de Niemann-Pick Tipo C , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Portadoras/genética , Glicoproteínas/metabolismo , Células Endoteliales/metabolismo , Distribución Tisular , Proteínas de Transporte Vesicular/genética , Encéfalo/metabolismo , Proteínas Recombinantes/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética
3.
PLoS One ; 16(3): e0236770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711041

RESUMEN

The blood-brain barrier (BBB) is formed by brain capillary endothelial cells (BECs) supported by pericytes and astrocytes. The BBB maintains homeostasis and protects the brain against toxic substances circulating in the blood, meaning that only a few drugs can pass the BBB. Thus, for drug screening, understanding cell interactions, and pathology, in vitro BBB models have been developed using BECs from various animal sources. When comparing models of different species, differences exist especially in regards to the transendothelial electrical resistance (TEER). Thus, we compared primary mice, rat, and porcine BECs (mBECs, rBECs, and pBECs) cultured in mono- and co-culture with astrocytes, to identify species-dependent differences that could explain the variations in TEER and aid to the selection of models for future BBB studies. The BBB models based on primary mBECs, rBECs, and pBECs were evaluated and compared in regards to major BBB characteristics. The barrier integrity was evaluated by the expression of tight junction proteins and measurements of TEER and apparent permeability (Papp). Additionally, the cell size, the functionality of the P-glycoprotein (P-gp) efflux transporter, and the expression of the transferrin receptor were evaluated and compared. Expression and organization of tight junction proteins were in all three species influenced by co-culturing, supporting the findings, that TEER increases after co-culturing with astrocytes. All models had functional polarised P-gp efflux transporters and expressed the transferrin receptor. The most interesting discovery was that even though the pBECs had higher TEER than rBECs and mBECs, the Papp did not show the same variation between species, which could be explained by a significantly larger cell size of pBECs. In conclusion, our results imply that the choice of species for a given BBB study should be defined from its purpose, instead of aiming to reach the highest TEER, as the models studied here revealed similar BBB properties.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Técnicas de Cultivo de Célula , Tamaño de la Célula , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratones , Modelos Biológicos , Permeabilidad , Ratas , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Porcinos , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
4.
Materials (Basel) ; 12(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683542

RESUMEN

Magnetic nanoparticles have great prospects for drug delivery purposes, as they can be designed with various surface coatings and conjugated with drugs and targeting moieties. They also have a unique potential for precise delivery when guided by magnetic force. The blood-brain barrier (BBB) denotes the interface between the blood and brain parenchyma and hinders the majority of drugs from entering the brain. Red fluorescent magnetic nanoparticles were encapsulated in liposomes and conjugated to antibodies targeting the rat transferrin receptor (OX26) to form magnetic immunoliposomes. These magnetic immunoliposomes enhanced the uptake by rat brain capillary endothelial cells (BCECs) in vitro. In situ brain perfusion in young rats high in the endogenous expression of transferrin receptors by BCECs, revealed enhanced uptake of magnetic immunoliposomes when compared to naked magnetic nanoparticles or non-targeted magnetic liposomes. When applying the external magnetic force, the magnetic nanoparticles were detected in the brain parenchyma, suggesting transport across the BBB. Ultrastructural examination of the immunoliposomes, unfortunately, was unable to confirm a complete encapsulation of all naked nanoparticles within the liposomes, suggesting that the data on the brain could derive from particles being released from the liposomes under influence of external magnetic force; hence hypothesizes on external magnetic force as a qualifier for dragging targeted magnetic immunoliposomes through the BBB. In conclusion, our results suggest that transport of magnetic nanoparticles present in BCECs by targeted delivery to the transferrin receptor may undergo further transport into the brain when applying magnetic force. While magnetic immunoliposomes are targetable to BCECs, their design to enable further transport across the BBB when applying external magnetic force needs further improvement.

5.
Prog Neurobiol ; 181: 101665, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376426

RESUMEN

Obtaining efficient drug delivery to the brain remains the biggest challenge for the development of therapeutics to treat diseases of the central nervous system. The main obstacle is the blood-brain barrier (BBB), which impedes the entrance of most molecules present in the systemic circulation, especially large molecule drugs and nanomedicines. To overcome this obstacle, targeting strategies binding to nutrient receptors present at the luminal membrane of the BBB are frequently employed. Amongst the numerous potential targets at the BBB, the transferrin receptor (TfR) remains the most common target used to ensure sufficient drug delivery to the brain. In this review, we provide a full account on the use of the TfR as a target for brain drug delivery by describing the function of the TfR in the BBB, the historical background of its use in drug delivery, and the most recent evidence suggesting TfR-targeted medicines to be efficient for brain drug delivery with a clear clinical potential.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Receptores de Transferrina/metabolismo , Animales , Transporte Biológico/fisiología , Humanos
6.
Cell Mol Life Sci ; 74(13): 2467-2485, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28293718

RESUMEN

Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.


Asunto(s)
Encéfalo/citología , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Eritropoyetina/metabolismo , Biosíntesis de Proteínas , Proteínas Recombinantes/metabolismo , Transfección/métodos , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células HeLa , Humanos , Inmunohistoquímica , Mitosis , Modelos Biológicos , Ratas Sprague-Dawley
7.
Curr Pharm Des ; 22(35): 5487-5504, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27464719

RESUMEN

This review presents the present-day literature on the anatomy and physiological mechanisms of the blood-brain barrier and the problematic of cerebral drug delivery in relation to malignant brain tumors. First step in treatment of malignant brain tumors is resection, but there is a high risk of single remnant infiltrative tumor cells in the outer zone of the brain tumor. These infiltrative single-cells will be supplied by capillaries with an intact BBB as opposed to the partly leaky BBB found in the tumor tissue before resection. Even though BBB penetrance of a chemotherapeutic agent is considered irrelevant though the limited success rate for chemotherapeutic treatability of GBM tumors indicate otherwise. Therefore drug delivery strategies to cerebral cancer after resection should be tailored to being able to both penetrate the intact BBB and target the cancer cells. In this review the intact bloodbrain barrier and cerebral cancer with main focus on glioblastoma multiforme (GBM) is introduced. The GBM induced formation of a blood-tumor barrier and the consequences hereof is described and discussed with emphasis on the impact these changes of the BBB has on drug delivery to GBM. The most commonly used drug carriers for drug delivery to GBM is described and the current drug delivery strategies for glioblastoma multiforme including possible routes through the BBB and epitopes, which can be targeted on the GBM cells is outlined. Overall, this review aims to address targeted drug delivery in GBM treatment when taking the differing permeability of the BBB into consideration.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Antineoplásicos/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos
8.
Mol Neurobiol ; 53(10): 7237-7253, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26687231

RESUMEN

The mechanisms for iron transport through the blood-brain barrier (BBB) remain a controversy. We analyzed for expression of mRNA and proteins involved in oxidation and transport of iron in isolated brain capillaries from dietary normal, iron-deficient, and iron-reverted rats. The expression was also investigated in isolated rat brain endothelial cells (RBECs) and in immortalized rat brain endothelial (RBE4) cells grown as monoculture or in hanging culture inserts with defined BBB properties. Transferrin receptor 1, ferrireductases Steap 2 and 3, divalent metal transporter 1 (DMT1), ferroportin, soluble and glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin, and hephaestin were all expressed in brain capillaries in vivo and in isolated RBECs and RBE4 cells. Gene expression of DMT1, ferroportin, and soluble and GPI-anchored ceruloplasmin were significantly higher in isolated RBECs with induced BBB properties. Primary pericytes and astrocytes both expressed ceruloplasmin and hephaestin, and RBECs, pericytes, and astrocytes all exhibited ferrous oxidase activity. The coherent protein expression of these genes was demonstrated by immunocytochemistry. The data show that brain endothelial cells provide the machinery for receptor-mediated uptake of ferric iron-containing transferrin. Ferric iron can then undergo reduction to ferrous iron by ferrireductases inside endosomes followed by DMT1-mediated pumping into the cytosol and subsequently cellular export by ferroportin. The expression of soluble ceruloplasmin by brain endothelial cells, pericytes, and astrocytes that together form the neurovascular unit (NVU) provides the ferroxidase activity necessary to reoxidize ferrous iron once released inside the brain.


Asunto(s)
Vasos Sanguíneos/metabolismo , Barrera Hematoencefálica/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Astrocitos/metabolismo , Transporte Biológico , Capilares/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Masculino , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Oxidación-Reducción , Pericitos/metabolismo , Ratas Wistar
9.
Ther Deliv ; 6(10): 1145-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26446407

RESUMEN

Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/administración & dosificación , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos
10.
Fluids Barriers CNS ; 12: 19, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26246240

RESUMEN

BACKGROUND: Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. METHODS: Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. RESULTS: The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly, transfection of BCECs exhibiting BBB characteristics did not alter the integrity of the BCECs cell layer. CONCLUSIONS: The data clearly indicate that non-viral gene therapy of BCECs is possible in primary culture conditions with an intact BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/metabolismo , Transfección , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Barrera Hematoencefálica/citología , Permeabilidad Capilar , División Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Pericitos/metabolismo , Pericitos/fisiología , Ratas , Ratas Sprague-Dawley
11.
PLoS One ; 10(8): e0134765, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241648

RESUMEN

In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).


Asunto(s)
Astrocitos/citología , Barrera Hematoencefálica , Técnicas de Cultivo de Célula , Células Endoteliales/citología , Pericitos/citología , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Técnicas In Vitro , Manitol/metabolismo , Permeabilidad , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores de Transferrina/biosíntesis , Receptores de Transferrina/genética , Sus scrofa , Porcinos , Proteínas de Uniones Estrechas/biosíntesis , Proteínas de Uniones Estrechas/genética , Uniones Estrechas/fisiología
12.
Curr Pharm Biotechnol ; 13(12): 2349-54, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23016641

RESUMEN

The endothelial cells of the brain form the blood-brain barrier (BBB) that denotes a major restraint for drug entry to the brain. Traditional attempts to bypass the BBB have been by formulation of drugs with lipophilicity or low molecular weight designed to enable transport via solute nutrient transporters. The identification of many new targets in the brain cells form new ways of thinking drug design as modern therapeutics could be proteins and molecules of genetic origins like siRNA and cDNA that are prevented from entry into the brain unless encapsulated in drug carriers. In many chronic disorders affecting the central nervous system, the BBB is physically intact which further limits the entry of large molecules. The desirable entry of such molecules will be made by formulation of particular drug carriers that will enable their transport into the brain endothelium, or even through the endothelium and into the brain. This review discusses the potential of different principles for drug therapy to the brain with these main emphases on drug transport through the BBB: i) the effects of molecular lipidization, ii) the involvement of solute nutrient carriers, iii) targeted delivery using small peptides with high membrane penetrating properties, iv) treatment with magnetic nanoparticles. These different principles for therapy are also discussed with focus on possibilities of their improvement for targeted delivery to the brain.


Asunto(s)
Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Adsorción , Animales , Péptidos de Penetración Celular/administración & dosificación , Endocitosis , Humanos , Fenómenos Magnéticos , Proteínas de la Membrana/metabolismo , Nanopartículas/administración & dosificación , Preparaciones Farmacéuticas/administración & dosificación
13.
J Control Release ; 151(1): 45-50, 2011 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-21251935

RESUMEN

The blood-brain barrier (BBB) formed by brain capillary endothelial cells protects the brain against potentially harmful substances present in the circulation, but also restricts exogenous substances such as pharmacologically acting drugs or proteins from entering the brain. A novel and rather unchallenged approach to allow proteins to enter the brain is gene therapy based on delivery of genetic material into brain capillary endothelial cells. In theory in vivo transfection will allow protein expression and secretion from brain capillary endothelial cells and further into the brain. This would denote a new paradigm for therapy to transport proteins across the BBB. The aim of this study was to investigate the possibility to use brain capillary endothelial cells as factories for recombinant protein production. Non-viral gene carriers were prepared from pullulan, a polysaccharide, and spermine, a naturally occurring polyamine that were additionally conjugated with plasmid DNA. We were able to transfect rat brain endothelial cells (RBE4s) and human brain microvascular endothelial cells (HBMECs). Transfection of HBMECs with pullulan-spermine conjugated with plasmid DNA bearing cDNA encoding human growth hormone 1 (hGH1), led to secretion of hGH1 protein into the growth medium. Hence, the pullulan-spermine delivery system is a very promising method for delivering DNA to brain endothelial cells with potential for using these cells as factories for secretion of proteins.


Asunto(s)
Barrera Hematoencefálica/metabolismo , ADN/administración & dosificación , Células Endoteliales/metabolismo , Glucanos/química , Hormona del Crecimiento/genética , Transfección , Adulto , Células Cultivadas , ADN/genética , Femenino , Hormona del Crecimiento/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...